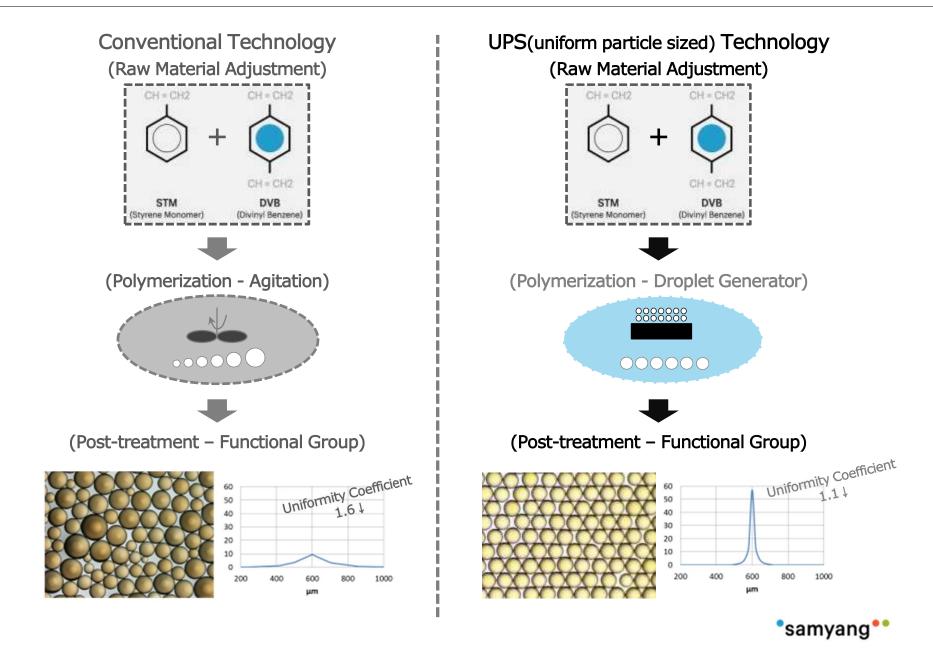
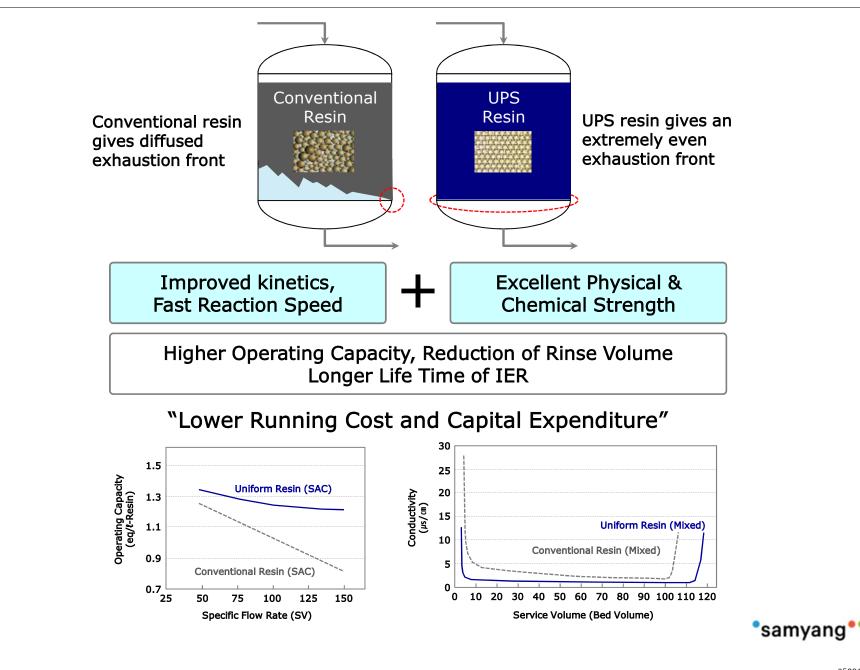


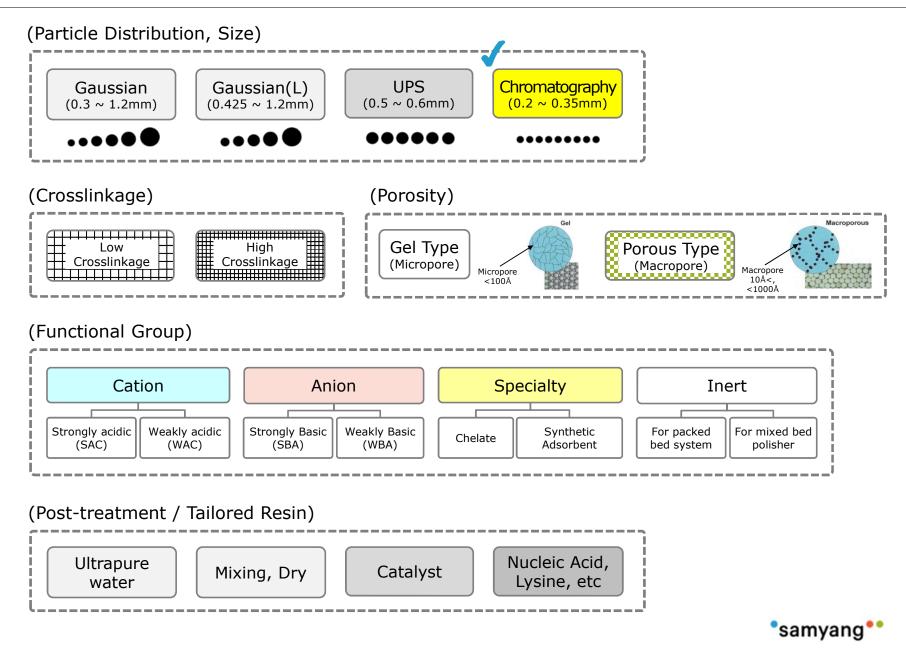
TRILITE_® Ion exchange resins


(For water treatment and petrochemical applications)

Samyang Corporation Ion exchange resin 31, Jongno 33-gil, Jongno-gu, Seoul, Korea TEL) 82-2-740-7732~7, FAX) 82-2-740-7790 http://samyangtrilite.com

5. Cutting-edge Technology Droplet Generator




Copyright by Samyang. 본 문서의 불법 유출 시 관계법과 규정에 의해 처벌 됩니다.

6/21

6. Next Generation IER, high performance low cost 7/21

Copyright by Samyang. 본 문서의 불법 유출 시 관계법과 규정에 의해 처벌 됩니다.

8/21

Water treatment Softening Demineralization

Condensate polishing Nuclear power

Catalyst

Ultrapure water

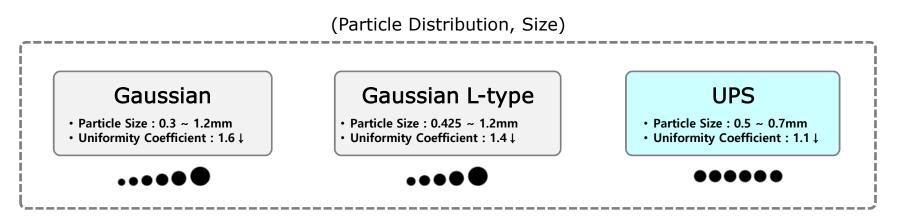
Chromatography

Fructose/glucose separation Amino acid separation Acid purification

Food

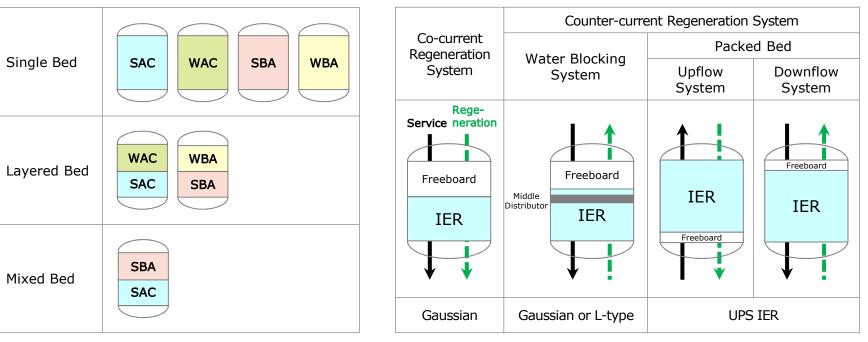
Starch sugar refining Sugar refining Nucleic acid, lysine separation


Chelating resins


Secondary brine purification Wastewater treatment

Synthetic adsorbents

Ready to use mixed resins Layered bed anion resins Inert resins EO/EG cycle water treatment



(Classification by IER layer)

(Classification by regeneration system)

					}	* TEC: Total Excl	nange Capacity
TRILITE		Uniformity Coefficient	Strongly acidic (SA		Strongly basic anion resins (SBA)		
삼양 트리라이트 Ion Exchange Resin		(U.C)	Grade name	TEC (eq/ℓ)	Туре	Grade name	TEC (eq/ℓ)
	AAAA	-					
			MC-08	2.0 ↑	-	MA-12	1.3↑
Performance		1.1↓	MC-10	2.2 ↑	Type1	MA-10	1.35↑
Product Line	UPS	1.1 4	MC-14	2.5 †		MA-15	1.4↑
					Type2	MA-20	1.3↑
Dacia	Gaussian		SCR-B	2.0 ↑	Type1	SAR10	1.3 ↑
Basic		1.4~ 1.6↓				SAR12	1.3 ↑
Product Line		1.0 +			Type2	SAR20	1.3 ↑
				1			
			UKC-08	2.0↑	Type1	UKA-12	1.3 ↑
	UPS	1.1~ 1.2↓	UKC-10	2.2 †	WBA	AW80	1.6 ↑
_		1.2 +	UKC-12	2.3↑			
Economy			KC-07	1.9↑		KA-10	1.3 ↑
Product Line		1.4~	KH-70	1.9↑	Type1	KA-12	1.3 ↑
	Gaussian	1.6↓	KC-08	2.0↑	Type2	KA-20	1.3 ↑
			KH-80	2.0↑	71		
				2101			

*samyang

12/21

		Strongly a	cidic cation	resins (SAC)	S	trongly basic ani	on resins (S	SBA)		
TRILITE	Туре						•			
삼량 트리라이트 on Exchange Reein	туре	Grade name	TEC (eq/ℓ)	Particle distribution	Туре	Grade name	TEC (eq/l)	Particle distribution		
		MC-08	2.0 ↑	0.55~0.65mm		MA-12	1.3 ↑	0.53~0.63m		
		MC-08H	1.8↑	0.57~0.67mm		MA-12OH	1.0 ↑	0.57~0.67m		
	UPS Gel	MC-10	2.2↑	0.60~0.70mm	Type1	MA-10	1.35↑	0.50~0.60m		
erformance		MC-10H	1.9↑	0.61~0.71mm	Type1	MA-10OH	1.0 ↑	0.54~0.64m		
		MC-14	2.5↑	0.60~0.70mm		MA-15	1.4↑	0.55~0.65m		
		MC-14H	2.4↑	0.00~0.70		MA-15OH	1.2 ↑	0.58~0.68m		
					Type2	MA-20	1.3 ↑	0.53~0.63m		
	Gaussian			(General type)	Type1	SAR10(MB)	1.3↑	(General type)		
Basic	2000	SCR-B	2.0↑	0.3~1.2mm	турет	SAR12	1.3 ↑	0.3~1.2mm (L-type)		
			(L-type) 0.425~1.2mm	Type2	SAR20(MB)	1.3 ↑	0.425~1.2mm			
	UPS Gel	UKC-08	2.0↑	0.55~0.65mm	Type1	UKA-12	1.3↑	0.55~0.65m		
Economy		UKC-10	2.2↑	0.55~0.65mm						
		UKC-12	2.3↑	0.60~0.70mm						
	Gaussian	KC-07	1.9↑	(General type) 0.3~1.2mm (L-type)		KA-10	1.3 ↑	(General type)		
	Gaussian	KH-70	1.9↑		Type1	KA-12	1.3↑	0.3~1.2mm (L-type)		
	2000	KC-08	2.0 ↑		Type2	KA-20	1.3 ↑	0.425~1.2mm		
	,	KH-80	2.0↑	0.425~1.2mm						
	Functional group	(Polysty	vrene+DVB) +	Sulfonate	(Polystyrene+DVB) + Type1 : TMA, trimethylamine Type2 : DMEA, dimethylethanolamine					
	Туре	Weakly ad	cidic cation re	esins (WAC)	V	/eakly basic anic	on resins (W	/BA)		
Performance	Gaussian, UPS Porous	WCA10L	4.2↑	0.425~1.2mm		AW90	1.6↑	0.50~0.60m		
Basic	UPS Porous				WBA	AW80	1.6↑	0.40~0.60m		
Economy	Gaussian Porous					AW30L	1.5↑	0.425~1.2m		
	Functional group	(Polystyr	ene+DVB) + (Carboxylate	(Polystyrene+DVB) + Tertiary Amine					

*samyang

13/21

	Softening system	Line	SAC	SBA	WAC	WBA	
Softening (Industrial grade)		Performance MC-08 MC-10					
	SAC	Basic	SCR-B				
		Economy	UKC-08 UKC-10, UKC-12 KC-07, KC-08				
Softening (Food grade)	SAC	Economy	KH-70 KH-80				

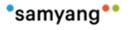
Sodium hypochlorite(NaClO), Free chlorine(Cl₂), Ozone(O₃)

When softeners are used with oxidizing agents such as sodium hypochlorite or free chlorine, it is recommended to use highly crosslinked strongly acidic cation ion exchange resin with high resistance to oxidation.

IER Se	lection	CIO ₂ Concentration	$Cl_2 \text{ or } O_3$ Concentration		
Performance	MC-08				
Basic	SCR-B	0.1ppm↓	0.2ppm↓		
Economy	UKC-08, KC-07, KC-08				
Performance	MC-10	0.15ppm↓	0.3ppm↓		
Economy	UKC-10	0.10ppin ‡			
Economy	UKC-12	0.2ppm↓	0.4ppm↓		

Food grade softening

When food grade softening is required, it is needed to select a suitable food grade ion exchange resin. Examples are as follows.

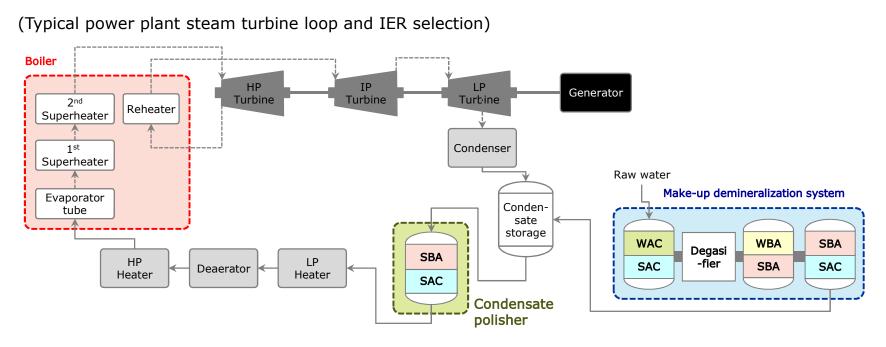


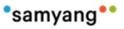
(NSF Test method)

100 ml of ion exchange resin is put into 100 ml of water at 70°C, and APHA(unit of chromaticity) is measured with a visible

spectrophotometer.

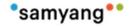
IER	Grad e	Spec.	Day 1	Day 2	Day 3	Day 4	Day 7
KH-80	Food	< 25	12	13	13	13	14
SCR-B	Tech	-	145	149	153	160	183
SCR-BL	Tech	-	53	55	191	257	347




	Demineralization system	Line	SAC	SBA	WAC	WBA
2B2T (2Bed 2Tower) Cation Exchanger +	SAC SBA	Performance	MC-08 MC-10	MA-12 MA-20		
Anion Exchanger		Basic	SCR-B	SAR10 SAR20		
2B3T Cation Exchanger + Degasifier + Anion Exchanger	SAC D SBA	Economy	UKC-08 UKC-10 KC-08	UKA-12 KA-12 KA-20		
Working MB	SBA	Performance	MC-08	MA-20P		
(Mixed Bed)	SAC	Basic	SCR-B	SAR20MB		
2B2T or 2B3T +	SAC SBA SBA SAC	Performance	MC-08 MC-10	MA-10P		
MBP (Mixed Bed Polisher)	SAC D SBA SBA SAC	Basic	SCR-B	SAR10MB		
	WBA SBA	Performance	MC-08 MC-10	KA18LB		AW90
3B3T+MBP	SAC D WBA SBA SBA SAC	Basic	SCR-B	KA18LB		AW80
		Economy	UKC-08 UKC-10	KA18LB		AW30L
		Performance	MC-08 MC-10	KA18LB	WCA10L	AW90
4B3T+MBP	WAC SAC D BA SBA SBA SBA	Basic	SCR-B	KA18LB	WCA10L	AW80
		Economy	UKC-08 UKC-10	KA18LB	WCA10L	AW30L
4B3T+MBP+ CPP(Condensate Polisher)	WAC D WBA SBA Conden- SAC D SBA SAC SAC	Performance	MC-10H MC-14H	MA-100H MA-150H		

Fast kinetics according to high uniformity, higher separation rate between Cation & Anion, high physical & chemical strength

	Condensate polishing resins											
TRILITE MS ENAME		Strongly acid	dic cation resi	ns (SAC)	Strongly basic anion resins (SBA)							
lan Exchange Resin	Туре	Grade name	TEC (eq/l)	Particle distribution	Туре	Grade name	TEC (eq/ł)	Particle distribution				
Gaussian		Porous	AMP18L	1.3↑	0.425~1.2mm							
Gaussiali		CMP28LH	1.8↑	0.423~1.200	type1	AMP18LOH	1.0 ↑	0.425~1.200				
	Gel	MC-10	2.2↑	0.60~0.70mm		MA-10	1.35↑	0.50~0.60mm				
UPS		MC-10H	1.9 ↑	0.61~0.71mm	Gel	MA-10OH	1.0 ↑	0.54~0.64mm				
0P5		MC-14	2.5↑	0.50.0.60	type1	MA-15	1.4↑	0.55~0.65mm				
		MC-14MH	2.4↑	0.50~0.60mm		MA-15OH	1.2↑	0.58~0.68mm				

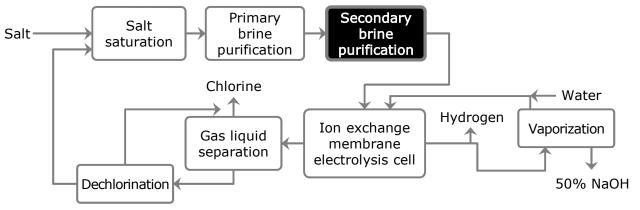


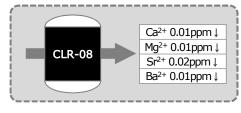
% TEC: Total Exchange Capacity

TRILITE		Strongly acidic cation resins for catalyst (SAC for catalyst)										
상양 트리라이트 Ion Exchange Resin	Туре	Grade name	TEC (eq/ł)	Particle distribution		Туре	Grade name	TEC (eq/ℓ)	Particle distribution			
		PCC30H	$1.1\uparrow$	(General type) 0.3~1.2mm (L-type)	UPS	Gel catalyst	MC-04H	1.2↑	0.47~0.57mm			
		PCC40H	1.2 ↑									
Caussian	Porous		1.0 ↑			Porous	SPC400H	1.0↑	(General type)			
Gaussian	Catalyst	CMP28H	2.0 ↑	0.425~1.2mm	Caussian	Catalyst	SPC160H	1.5↑	0.3~1.2mm			
		SPC260H	1.7↑	(XL-type)	Gaussian		SPC180H	1.5↑	(L-type)			
	MORRE	SPC280H	2.0↑	0.7~1.2mm		HORRO	SPC320H	1.9↑	0.425~1.2mm			

(Typical catalysis application and selection of catalytic resins)

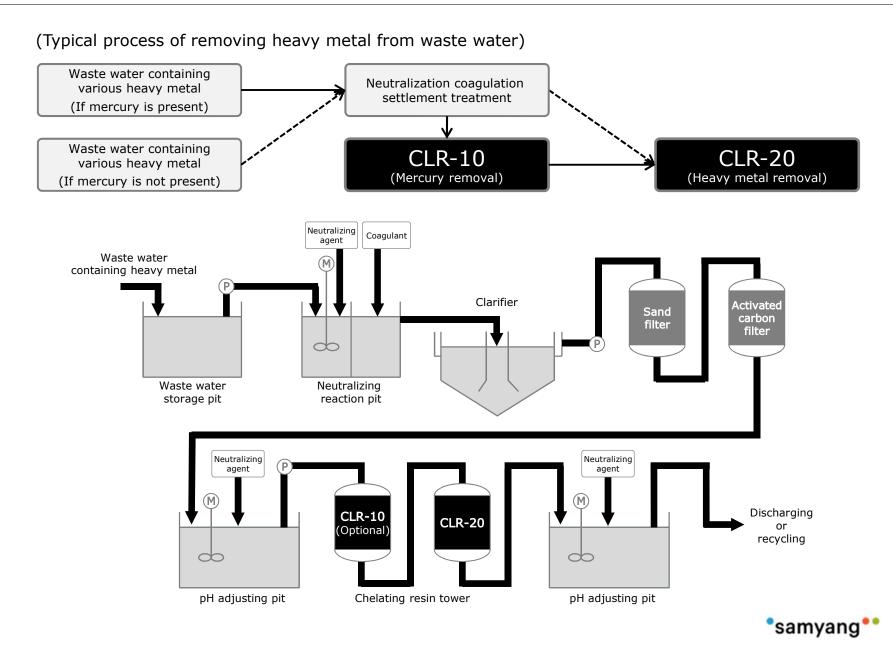
Application	Reaction	Catalytic resins	Equivalent
Hydrolysis of methyl acetate	$CH_3COOCH_3 + H_2O \rightarrow CH_3COOH + CH_3OH$	CMP08LH	
Esterification reaction	RCOOH + ROH \rightarrow RCOOR + H ₂ O	PCC40H, MC-08H, CMP08LH, SPC160H, SPC180H, SPC400LH	
Synthesis of methyl methacrylate	$CH_2 = C \begin{array}{c} < CH_3 \\ - COOH \end{array} + CH_3OH \rightarrow CH_2 = C \begin{array}{c} < CH_3 \\ - COOCH_3 \end{array} + H_2O$	SPC180H	
Alkylation of phenol	$ \overset{OH}{ \longmapsto} + H_2 C \preccurlyeq^R_H \rightarrow \overset{OH}{ \longmapsto} \overset{OH}{ \overset{R}{ \longmapsto} } \overset{CH}{ \overset{R}{ \longleftarrow} } \overset{CH}{ \overset{R}{ \leftarrow} } \overset{CH}{ \overset{R}{ \overset{R}{ \leftarrow} } \overset{CH}{ \overset{R}{ \overset{R}{ \leftarrow} } \overset{CH}{ \overset{R}{ \overset{R}{ \leftarrow} } \overset{CH}{ $	SPC260H, SPC320H	Amberlyst15Wet
Synthesis of Bisphenol A	\bigcirc -OH + H_3C CH ₃ \rightarrow HO- \bigcirc -OH H_3C CH ₃	РССЗОН, РСС40Н	
Methyl tertiary butyl ether(MTBE)	$H_2C \prec {CH_3 \atop CH_3} + CH_3OH \rightarrow H_3C + {CH_3 \atop CH_3}OMe$	SPC280H	Amberlyst35Wet
t-amyl methyl ether(TAME)	$H_2C \prec \stackrel{CH_3CH_{3_{+}}}{CH_3} CH_3OH \rightarrow H_3C \xrightarrow{CH_3CH_3}{H_3CH_3} OMe$	SPC160H, SPC180H	





TRILITE				Chelating	resins		
삼량 트리라미트 Ion Exchange Reein	Grade name	Functional group	Ionic form	TEC (eq/ℓ)	Particle distribution	Application	Equivalent
	CLR-08	Iminodiacetate	Na	Cu ²⁺ 0.5↑ Ca ²⁺ 0.4↑	0.4~1.0mm	Brine purification	Lewatit TP208 Amberlite IRC748 Diaion CR11 Purolite S930
	CLR-09	Aminomethyl phosphonate	Na	Ca ²⁺ 0.6↑	0.4~1.0mm	Brine purification	Lewatit TP260 Amberlite IRC747 Purolite S940
	CLR-10	Thiouronium	Н	1.1↑	0.3~1.25mm	Mercury removal	Eporous-Z7 Purolite S924
Gaussian	CLR-20	Polyamine	ОН	4mol as copper ↑	0.4~1.25mm	Heavy metal removal	Diaion CR20 Eporous MX-8C
	CLR-B3	Glucamine	Free base	0.6eq/ℓ as boron↑	0.3~1.25mm	Boron removal	Diaion CRB03 Amberlite IRA743 Purolite S108
	CLR-B3UP	Glucamine	Free base	0.6eq/ℓ as boron ↑	0.3~1.25mm	Boron polisher (TOC 5ppb↓)	Diaion CRBT03
	CLR-F	Aminophosphonate	Al	11g as fluorine ↑	0.3~1.0mm	Fluoride removal	Eporous-K1
	CLR-N	Triethylamine	Cl	1.0 ↑	0.3~1.25mm	Nitrate removal	Amberlite IRA996 Purolite A520E

(Typical process of chloro-alkali process)


(Secondary brine purification)

*samyang

Ready to use mixed resins

TRILITE

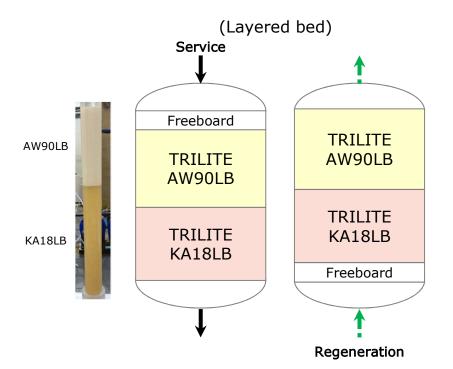
(Selection of Ready to use mixed resins)

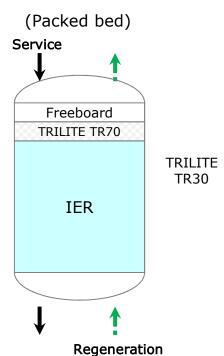
Grade name	Feature & Application	Components		Treated Water Quality
SM200	Simple production of pure water from tab water	KC-08H(H ⁺ 99.0% ↑) KA-12OH(OH ⁻ 90.0% ↑)	Out	Guarantee) Resistivity > 10.0 M Ω ·cm (in 10min.) Actual) Resistivity > 15.0 M Ω ·cm (in 10min.)
	For Laboratories, Wire-cutting(EDM)	Mixed ratio(Volume) : 45:55	Feed	Conductivity 150µs/cm Potable water, SV36
SM210	Simple production of pure water from tab water	SCR-BH(H ⁺ 99.0%↑) SAR12OH(OH ⁻ 95.0%↑)	Out	Guarantee) Resistivity > 15.0 M Ω ·cm (in 10min.) Actual) Resistivity > 17.0 M Ω ·cm (in 10min.)
	For Laboratories, Wire-cutting(EDM)	Mixed ratio(Volume) : 45:55	Feed	Conductivity 150µs/cm Potable water, SV36
SM300	High Resistivity and superb SiO ₂ removal ability	SCR-BH(H ⁺ 99.0% ↑) SAR12OH(OH ⁻ 95.0% ↑)	Out	Guarantee) Resistivity > $15.0 \text{ M}\Omega \cdot \text{cm}$ (in 10min.) Actual) Resistivity > $17.0 \text{ M}\Omega \cdot \text{cm}$ (in 10min.)
	MB for Post-RO and EDI	Mixed ratio(Volume) : 40:60	Feed	Conductivity 10µs/cm RO outlet, SV36
UPRM100U	Very high resistivity	UPRC100U(H ⁺ 99.0% ↑) UPRA100U(OH ⁻ 95.0% ↑)	Out	Guarantee) Resistivity > 17.0 M Ω ·cm (in 10min.) Actual) Resistivity > 18.0 M Ω ·cm (in 10min.)
(UPS grade)	Electronics Grade Ultrapure water	Mixed ratio(Capacity) : 50:50	Feed	Conductivity 10µs/cm RO outlet, SV36
UPRM200U	Very high resistivity, Low ΔTOC level	UPRC200U(H ⁺ 99.0% ↑) UPRA200U(OH ⁻ 95.0% ↑)	Out	Resistivity >18.1№ cm (in 30min.) △TOC<5ppb (in 120min.)
(UPS grade)	LCD, OLED Ultrapure water final polisher	Mixed ratio(Capacity) : 50:50	Feed	Resistivity >17.5M Ω cm, TOC<2ppb, SV30
UPRM300U (UPS grade)	Extremely high resistivity Extremely low ΔΤΟC level Metal ion < 0.1ppt Semiconductor Ultrapure water final polisher	UPRC300U(H ⁺ 99.9% ↑) UPRA300U(OH ⁻ 97.0% ↑) Mixed ratio(Capacity) : 50:50	Out Feed	Resistivity >18.2M0 cm (in 30min.) \(\DeltaTOC<1ppb (in 180min.))

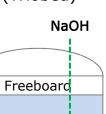
(Pressure vessel for RO unit)

(Cartridge polisher for wire-cutting)

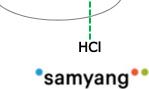
*samyang




Layered bed anion resins Inert resins


※ TEC: Total Exchange Capacity

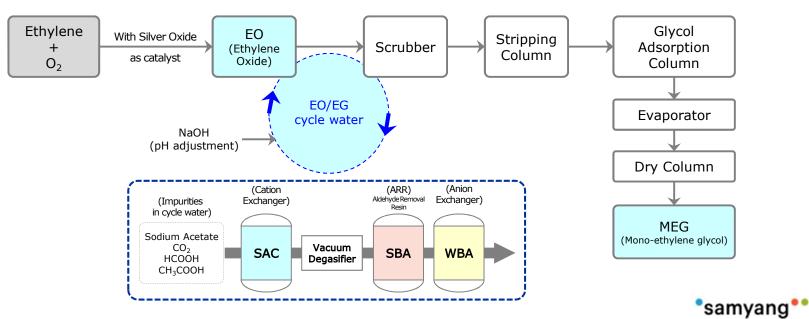
TRILITE		Layered bed	anion resi	าร	Inert resins					
삼량 트리라미트 Ion Exchange Reein	Туре	Grade name	TEC (eq/ℓ)	Particle distribution	Grade name	Matrix	Shipping density(g/ł)	Particle distribution	Application	
UPS	Porous WBA	AW90LB	1.6↑	0.5~0.6mm	TR70	Poly- ethylene	500	1.2~1.8mm	Inert resin for packed bed	
Gaussian	Gel type1	KA18LB	1.3↑	0.6~1.2mm	TR30	Polystyrene +DVB	725	0.7~0.9mm	Inert resin for triobed	



SBA

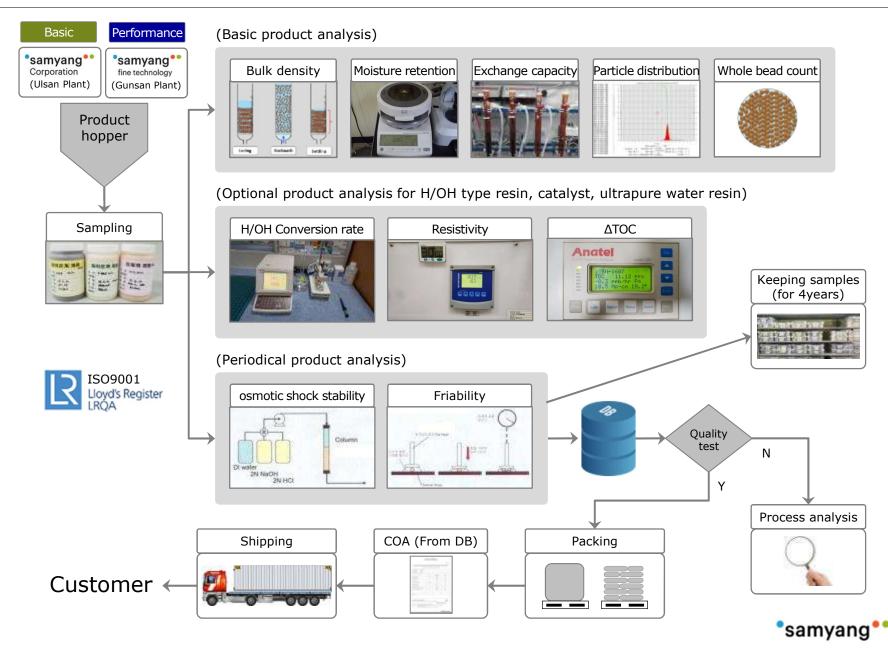
SAC

EO/EG cycle water treatment


TRILITE are sac off the forthing effects 21/21

* TEC: Total Exchange Capacity

TRILITE 상양 트리라이트 Ion Exchange Resin	Strongly acidic cation resins (SAC)				Strongly basic anion resins (SBA)			
	Туре	Grade name	TEC (eq/ℓ)	Particle distribution	Туре	Grade name	TEC (eq/ℓ)	Particle distribution
Gaussian	Cation Exchanger	SPC260EGH	1.7↑	0.3~1.2mm	ARR	AMP16EG	1.2↑	0.3~1.2mm


TRILITE	Weakly basic anion resins (WBA)						
삼양 트리라이트 Ion Exchange Resin	Туре	Grade name	TEC (eq/ℓ)	Particle distribution			
UPS	Anion Exchanger	AW90EG	1.6↑	0.50~0.60mm			

(Typical MEG production process)

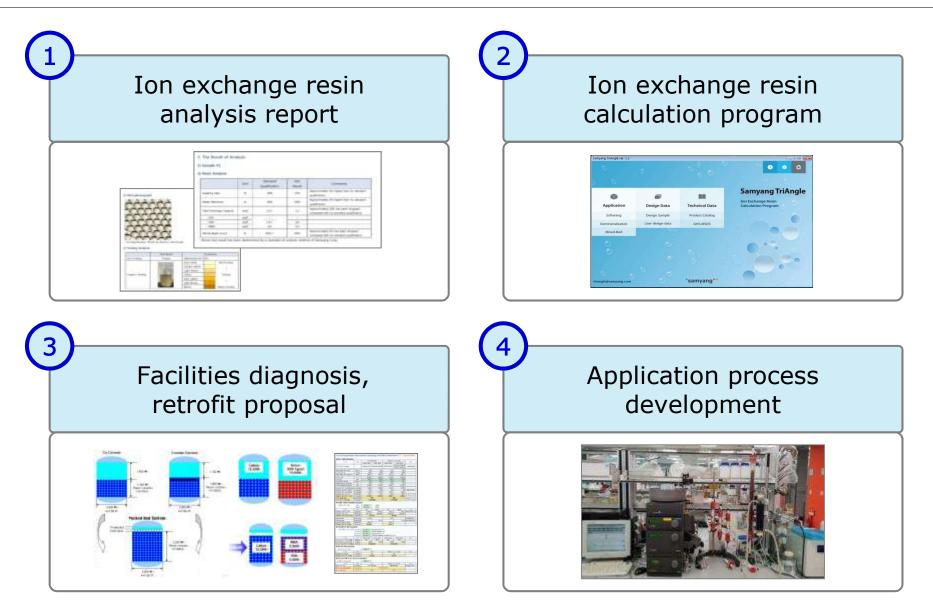
8. Product analysis / Quality control

Copyright by Samyang. 본 문서의 불법 유출 시 관계법과 규정에 의해 처벌 됩니다.

9. Quality assurance system

Quality standard and total quality management are both necessary for any organization to become world class. The commitment to total quality operations is a way of life in Samyang.

10. Packing line, packing type



11. Technical service

samyang

14. Cross reference guide

"Only 3 major companies possess UPS resin(**U**niformity **C**oefficient $1.1\downarrow$) technology in the world" $\rightarrow (1)$ Samyang & Mitsubishi, (2)Dow, (3)Lanxess

Туре		TRILITE NO ENDONE In Exchange Resn	Mitsubishi DIAION	Dupont(DOW)		Lanxess	Purolite
				Dowex	Amberjet/lite	Lewatit	Puronte
		UC 1.1 ↓	UC 1.1 ↓	UC 1.1 ↓	UC 1.2 ↓	UC 1.1↓	UC 1.2 ↓
	SAC	MC-08	UBK08	Marathon C	1200	MP S100	PFC/PPC100
		MC-08H	UBK08H	Marathon CH	1200H	MP S100H	PFC/PPC100H
		MC-10	UBK10	Mono 650 C	1500	MP S108	SGC-650C
		MC-10H	UBK10H	Mono 650 C H	1500H	MP S108H	SGC-650CH
	SAC (Chromatography)	MCK series	UBK500 series			MDS series	
UPS Gel	SBA_Type 1	MA-12	UBA120	Marathon A	4200 Cl	MP M500	PFA/PPA400
		MA-12OH	UBA120OH	Marathon A OH	4200 OH	MP M500 OH	PFA/PPA400 OH
		MA-10	UBA100	Mono 550A	4400 Cl	MP M800	SGC-550A
		MA-10OH	UBA100OH	Mono 550A OH	4400 OH	MP M8000H	SGC-550A OH
		MA-15	UBA150	Mono 550A	4400 Cl	MP M800	SGC-550A
		MA-15OH	UBA150OH	Mono 550A OH	4400 OH	MP M8000H	SGC-550A OH
	SBA_Type 2	MA-20	UBA200	Marathon A2	4600 Cl	MP M600	PFA/PPA200
	UPW_Mixed Bed	UPRM100U					UCW 3600
		UPRM200U		MR-450 UPW	UP6150	1292MD	UCW 3700
		UPRM300U		MR-3 UPW	UP6040	1294MD	UCW 9966
UPS Porous	WBA	AW80		Monosphere 66		MP64/MP68	
Gaussian Gel		UC 1.6↓	UC 1.6 ↓		UC 1.6~1.8↓		
	SAC	SCR-B(KC-08)	SK1B	HCR-S	IR120Na	C249/C267	C100
	SAC_Food grade	KH-70/KH-80		HCR-S/S			C100E
	SBA	SAR10(KA-10)	SA10	SBRP	IRA400	ASB1	A400
		SAR11(KA-11)	SA11		IRA401S		
4404 1	SDA	SAR12(KA-12)	SA12		IRA402		A600
		SAR20(KA-20)	SA20	SAR	IRA416	ASB1	A200
	Mixed Bed	SM200/210/300			MB20	NM91	MB400
Gaussian Porous	SAC	CMP/SPC Series	PK series			SP120	C150, C160
	SBA	AMP Series	PA series	MSA	IRA900 OH	MP500	A500
	WAC	WCA10L	WK40/WK60L	MWC-1	IRC86	CNP80	C105
	WBA	AW30	WA30		IRA93SP	MP62	A100
	Chelating	CLR series TR series	CR series			TP207/208	S930Puls
Inert	Inert resin			IF-62		IN49	IP1

*samyang

